
Inferring Mobile User Activities via. Device-Side Cellular Network

Traces via. Machine Learning Approaches

Christopher Nosowsky and Hamzeh Alzweri

Abstract

With recent developments in internet technology and an increasing use of mobile smartphones, there

exists a need for optimization of cellular networks through the means of traffic classification. By utilizing

a tool, MobileInsight [1], we can monitor cellular network traces across different applications with the

goal of successfully classifying user activities. Our classification will be determined by a machine learning

model, which will learn to classify applications into pre-determined categories such as tooling, shopping,

entertainment, and social media.

Introduction

When it comes to advances in technology, it is no surprise that there have been major advancements in

mobility and cellular network technology. Speed and coverage have never been more important in a

generation, as many are on the go or utilizing cell phones to access documents, join conferences, and

perform critical tasks over the internet. This is projected to grow, reaching 77.5 exabytes per month

worldwide, an annual increase of 46 percent [2]. With this increase, we are looking for ways to not just

expand the infrastructure for user support, but also looking into ways of optimizing the network

operations. The problem, however, is that access is limited to the runtime operations on cellular

protocols. The lack of access has created many blockers for researchers and developers looking to refine

the process of network operations and understand how cellular protocols operate. We will not be able

to advance our understanding in this closed cellular network system. As an example of our lack of

understanding, let us take a phone trying to upload a photo. If the photo takes a long time to upload, we

cannot fully understand if this is caused by network issues or just a poor cellular reception. By having

this access to the protocols design, we can perform various functions that can help improve our

infrastructure's performance and optimization. This would be especially beneficial to businesses,

personal, internet service provider (ISP), and government networks who are looking at ways to support

large amounts of users and utilize the most resources at particular times of the day. We could further

classify applications with such data to help improve our network traffic quality. It would be nice to have

a way of exploring such problems in the network infrastructure by providing us with a tool that can be

built and shared across devices. One such tool can allow us to access cellular network traces and be able

to see the trace data being sent and received between the different protocol layers. If we are able to

extract this information, then we could further refine the features or data that is meaningful, to

determine what user activities are being utilized the most. This can then lead to solving network

problems such as capacity planning, faulty diagnosis, application performance, anomaly detection, and

trend analysis [3]. Furthermore, classification of applications shows its benefits. The first way it is

beneficial is by helping with the Quality of Service on the network. Resources are limited, so being able

to prioritize different applications properly can help avoid common issues like the network congestion

problem. It could also help with analysis of traffic in performing trend analysis. This would be especially

beneficial for internet service providers checking user activities throughout the day to determine peak

and low utilization times so that they can build their infrastructure accordingly.

Problem Description

The problem entails that internet service providers are not able to effectively build and plan for capacity

load on their networks without properly knowing what happens beyond just the cellular interface.

Commodity phones with an operating system and applications have very limited access to such lower-

level cellular information at runtime. The operating system tends to abstract such fine grain information

to reduce complexity. To help internet service providers and businesses solve network problems, we will

be introducing a machine learning approach that can help by providing a classification of user activities

in the network based on user cellular trace data. Using MobileInsight, we can achieve proper user

activity classification. MobileInsight gives us access to below-IP protocol messages to obtain low-level

network information. Using this tool, we can record and monitor cellular traces that come in through

each application. For our applications, we will be choosing twenty applications that are common on the

Google Play store [4]. In Table 1 below, we list the applications that we ended up using. For our

considerations, we have decided to limit our user activity choices into four distinct categories: Shopping,

Tooling, Entertainment, and Social. Each category chosen has distinctive properties that will be justified

in our section describing our machine learning approach. We ensured each category was distributed

with at least three applications to collect data evenly.

Shopping Tooling Entertainment Social

Airbnb Gmail IMDB LinkedIn

Doordash Google Chrome Twitch New York Post

Macys Google Maps Youtube Pinterest

McDonalds Google Play Reddit

Starbucks Snapchat

Walmart Twitter

Zillow

Table 1. Chosen applications

Challenges

When approaching our solution, we came across various challenges. One of the first challenges we dealt

with was device support for the MobileInsight tool. It is great to have such support to begin with, but

the devices this application was working on were limited to the devices listed in Table 2 below. While

there were not many devices, we ended up getting access to a Google Pixel 3 with a Qualcomm

Snapdragon chipset. This device is in the list of compatible phones pulled from the MobileInsight

website [1].

Compatible Phones

XiaoMi Mi 9 ZTE Obsidian LG G3

Lenovo Z5 Pro GT Huawei Nexus 6P Samsung Galaxy Note 3

Google Pixel 3/3 XL ZTE Nubia Z9 LG Tribute

XiaoMi Mi 8 SE Samsung Galaxy S5 Sony Xperia Z3

Google Pixel 2/2 XL Samsung Galaxy S4 Motorola Nexus 6

Google Pixel XL Sony Xperia Z3

Huawei Pixel Xiaomi Mi 4

Table 2. Phones compatibility

Another challenge we came across was the lack of documentation for setting up MobileInsight. The

website and GitHub repository did not provide many details on setting up the mobileinsight-core

repository [5] that we had to utilize to access their modules in order for this project to work. We were

hoping to be pointed in the right direction, for example, when it came to the location of the build folder

after running the shell script for setting up the mobile insight graphical user interface. We were running

into compilation errors, unable to locate library .so files when pointing to the mobileinsight-core source

code folder. We also faced additional challenges when running through the tutorials in the

documentation. Some source code was missing import statements. We were able to resolve all of these

issues with no problem.

Another challenge we faced was that there was no one-to-one relationship between the cellular

network traces we gathered for each application. For example, recording on the Twitter application

resulted in more MAC layer packets versus RLC layer packets. This was a risk we accepted and we

understood that we could not combine features across different packets when building our machine

learning model. Instead, we went with choosing one packet for our model that produced the highest

accuracy results across the applications.

Ensuring consistent recording time was another challenge we faced. In order to avoid human selection

bias, we could not record on one particular application longer than another application. We set a five-

minute timer to record each application so that we could gather enough data in a consistent fashion.

We also found that another challenge dealt with running concurrent applications when recording with

MobileInsight. Having applications running the background caused cross-interference between the

background and foreground applications, mixing packets from the two together. To avoid this, we made

sure we had no background applications running prior to starting the recording for each application.

The last challenge we came across was that the MobileInsight API was only supported on MacOS and

Linux systems. This left us with either setting up a Vagrant machine that they provided or setting up a

custom build virtual machine that we can create. We went with the custom build option since we had

experience in setting up virtual machines and wanted to test its compatibility on Ubuntu 20.04.

System Design

Figure 1 below shows a high-level view of our intended system design.

Figure 1. System design high-level view

The first step is to be able to download the MobileInsight application onto our mobile device. We will

then start the NetLogger monitor on the application and ensure we went to the settings and checked to

log all protocol packets. The second step is to individually open our applications per recording and

perform normal tasks on each application to ensure we cover typical user behavior. We will perform this

function for five minutes for each application. After we gather all the recordings, we extract the log files

located in our device's storage. These log files have a mi2log file format. We made sure that we

extracted each log file after each application recorded since all the cellular trace logs are stored in the

same location and it would be hard to distinguish between the different applications logs. These log files

got extracted and stored into our Ubuntu VM, where it hosts our mobileinsight-core repository. This is

the repository that has the modules in Python for our project to utilize for running analyzers to look at

the cellular trace data. For step 5, we utilize this repository and run the MobileInsight OfflineReplayer,

which will read the mi2log files and parse it into any format we choose. We decided to decode our log

files into XML format. Once we saved our log files into XML, we were able to create a Python script for

parsing the XML into CSV format. This is the last format we convert it to since it can be read in by the

Python Pandas library we use for our preprocessing. That is the last step, to load in our CSV data,

preprocess the data, and send it into our machine learning model to learn the data. The result would be

a highly versatile model capable of classifying user activities.

Project Setup

For the initial project setup, we downloaded the twenty apps listed in Table 1 above on the Google Pixel

3 device we intended to gather our network trace data on. These apps can all be found on the Google

Play store. We also went to the MobileInsight website and downloaded their application. The next step

for our setup was to open the MobileInsight app and create log files for 100KB of packet traces as well

as log all type of packet traces. This would complete the setup on the mobile side. For the actual

development work to be done, we had to prepare our machines by setting up an Oracle VirtualBox

virtual machine with Ubuntu 20.04. We got this image from the internet. Once all the operating system

packages and updates were installed on the virtual machine, we installed the Git version control

software so that we could clone the Mobileinsight-core repository to utilize the MobileInsight modules.

We also had to setup our environment for the Python language to use in our project. We used Python

3.8.0 and the Pip package manager to install all dependencies. Finally, our project was created within

the PyCharm IDE.

Data Collection

We used the MobileInsight mobile application to collect log files that contain the network traces we

used the NetLogger plugin in the application to collect 4G LTE packet traces for 20 different applications.

Many types of network traces can be logged e.g 5G_NR_RRC_OTA_Packet, LTE_RRC_OTA_Packet, etc.

We allowed the NetLogger to log all type of network traces because we didn’t know in advance which

type of packet will help the machine learning model to get the best results.

The code below extracts the mi2log files that we collected from the NetLogger as XML files, we run it for

each application log files separately:

Figure 2. mi2log to XML converter

The result is a folder filled with XML files that contain all types of network packets as an XML tag called

<dm_log_packet>, each <dm_log_packet> represents a network packet that was logged by the mobile

application, see figure 5. However, these files contain all types of packets in each log file and we need to

rearrange these packets so that all packets of the same type are placed in the same file.

Figure 3. A network packet in XML format

The below function collects all packets of the specified type from all log files in a directory and saves

them into a list.

.

Figure 4. Collecting packets of the same type

Next, we convert the list of packets into a csv file where each row represents a packet, we have to do

this in order to preprocess the data and feed it into the model as a data frame for training.

Figure 5. Master CSV file for single packet type

Data Preprocessing

 The following are the preprocessing operations we applied to the data in the csv file:

- Merge all applications' files of a particular packet in a single master file.

- Drop all empty columns.

- Drop columns that have the same value for all rows (these won't help the model differentiate

between the applications).

- Drop rows with empty values, some packets had missing data, so we decided to drop them

instead of filling the missing data with dummy data using mean for example. The reason we did

this is that we have a lot of data, so we didn't want the dummy data to affect the model's

performance.

- Drop duplicated columns.

- Add a label column to each master file, where each label is the category that the packet belongs

to.

- Apply one-hot encoding to the non-numerical data.

- Normalize the data to have mean 0 and standard deviation of 1.

Attempts and Results Analysis

For the results analysis, we were not entirely sure about what packets were going to produce the most

sufficient results. For this, we performed feature engineering and data analysis to select the packets to

focus our attention to. Below in Table 3 lists the packets we selected to train and test our model

predictions on. We also included the number rows as an indication of how much data was available.

Keep in mind that the row count was the overall combination of all packet data across the twenty

applications once our preprocessing was completed. The data was easy to distinguish since we made

sure we were labeling each record with its respective application.

Packet Data Count

LTE_MAC_UL_Tx_Statistics 3788

LTE_RRC_OTA_Packet 603

LTE_PDCP_DL_Stats 1186

LTE_PDCP_UL_Stats 5573

LTE_RLC_UL_Stats 343

Table 3. Data description

Table 4 below lists the machine learning models we used for testing each packet. We considered a

variance of models that tended to perform well with multi-label classification and ones that could

perform better with lower amounts of data.

Model
Logistic Regression

Support Vector Machine

XGBoost classifier

Fully connected neural network

Table 4. Machine Learning models used

Selected Packet and Model

After training using the packets mentioned above, we chose to stick with the LTE_PDCP_UL_Stats packet

as it outperformed all other packets on all models. This packet carried data about the number of bytes

for Data and Control plane PDCP PDU, number of SDU missing from upper layer, and included PDCP

Header length as well. We believe that these features are what helped the model distinguish between

the applications, the below table shows the results obtained on each model using this packet:

Packet Logistic
regression SVM Full connected

network

LTE_RRC_OTA_Packet

0.336 0.336 0.277 0.235

LTE_MAC_UL_Tx_Statistic 0.165 0.145 0.165 0.176

LTE_PDCP_DL_Stats 0.435 0.300 0.502 0.317

LTE_PDCP_UL_Stats 0.627 0.630 0.882 0.598

LTE_RLC_UL_Stats 0.406 0.264 0.348 0.232

Table 5. Results obtained on selected Machine Learning models

The below shows the losses and accuracies for the training and validation data over epochs:

Figures 6-12. Loss and accuracy results for training and testing data

From the above, we can see that the Fully connected neural network model outperforms all other

models in accuracies and losses with around an 88.2% test accuracy. We also observed that the models

were not overfitting the data since the training and testing curves were close to each other (results were

almost similar even on unseen data) So the model learned useful features and is not memorizing input

data. However, the XGBoost model was overfitting the data as we can see in the plot.

Lessons Learned

We learned that the amount of data was not as much as we were expecting when running the recording

for just 5 minutes. We believe that based on the accuracy results, we saw higher variance between the

different seeds we tested on. The accuracy we recorded was the best we saw across all the seeds

(shuffled data) but varied depending on how the data was shuffled. With a higher amount of data, we

would have ended up getting less variance and possible better results since the model has more data to

make representations on instead of generalizing, which could lead to poorer model performance. In

hindsight, we learned that data is important for a classification problem like this one. We further expand

upon this by thinking that we could have applied a K-fold cross validation to break our data into K

partitions rather than dedicating a full 20% of our dataset towards validation.

Another lesson that we learned is that PDCP plays an important role in distinguishing between different

user activities. We noticed that applications between social media and shopping varied greatly when it

came to the PDU bytes. It also varied when it came to number of radio bearers and PDCP header length.

The PDU bytes was explainable as it varied depending on higher layer signaling and user traffic for the

user activities. Since it deals with transferring user plane and control plane data, it was receiving SDU

byte information from upper layers such as the application layer. Ultimately, the features were enough

to distinguish between user activities and achieve high accuracy.

Conclusions and Future Work

In conclusion, we were able to utilize the MobileInsight data to train a machine learning model to

classify the 20 selected applications with high accuracy. So, we can confidently say that MobileInsight

has the capability of classifying common applications with its device-side tool for collecting cellular

network traces. We were able to successfully collect and preprocess the necessary network packet

traces for training the model and getting a decent accuracy.

For our future work, we are considering trying to train a model that classifies more than 20 applications,

can we receive around the same performance by expanding the application set? Also, what if we were

recording on other carriers (Sprint, AT&T, etc.) beyond the one we recorded on (Verizon)?

Also, one thing that this model might be useful for is utilizing this model to prompt the user based on his

preferences, for example notify me whenever I'm spending too much time on Facebook.

References

[1] MobileInsight, getting started with mobileinsight. Retrieved 8th of December, 2021. From

http://www.mobileinsight.net/get_started.html

[2] Statista, global mobile data traffic growth rate. Retrieved 9th of December, 2021 from

https://www.statista.com/statistics/271405/global-mobile-data-traffic-

forecast/#:~:text=By%202022%2C%20mobile%20data%20traffic,growth%20rate%20of%2046%20percen

t.

[3] B. Yamansavascilar, M. A. Guvensan, A. G. Yavuz and M. E. Karsligil, "Application identification via

network traffic classification," 2017 International Conference on Computing, Networking and

Communications (ICNC), 2017, pp. 843-848.

[4] MobileInsight, MobileInsight-core framework. Retrieved 8th of December, 2021 form

https://github.com/mobile-insight/mobileinsight-core

http://www.mobileinsight.net/get_started.html
https://www.statista.com/statistics/271405/global-mobile-data-traffic-forecast/#:~:text=By%202022%2C%20mobile%20data%20traffic,growth%20rate%20of%2046%20percent
https://www.statista.com/statistics/271405/global-mobile-data-traffic-forecast/#:~:text=By%202022%2C%20mobile%20data%20traffic,growth%20rate%20of%2046%20percent
https://www.statista.com/statistics/271405/global-mobile-data-traffic-forecast/#:~:text=By%202022%2C%20mobile%20data%20traffic,growth%20rate%20of%2046%20percent
https://github.com/mobile-insight/mobileinsight-core

